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Abstract We show that all the coefficients of the polynomial
tr((A+1B)") e R[r]

are nonnegative whenever m < 13 is a nonnegative integer and A and B are positive semidef-
inite matrices of the same size. This has previously been known only for m < 7. The validity
of the statement for arbitrary m has recently been shown to be equivalent to the Bessis-
Moussa-Villani conjecture from theoretical physics. In our proof, we establish a connection
to sums of hermitian squares of polynomials in noncommuting variables and to semidefinite
programming. As a by-product we obtain an example of a real polynomial in two noncom-
muting variables having nonnegative trace on all symmetric matrices of the same size, yet
not being a sum of hermitian squares and commutators.
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1 Introduction

While attempting to simplify the calculation of partition functions in quantum statistical
mechanics, Bessis, Moussa and Villani (BMV) conjectured in 1975 [1] that for any hermitian
n x n matrices A and B with B positive semidefinite, the function

* B R—R, t > tr(eA_’B)

is the Laplace transform of a positive measure u'® on Rs. That s,
o0
A0 / e dut? (x)
0

for all + € R. By Bernstein’s theorem, this is equivalent to ¢*+# being completely monotone,
ie.,
s dS A,B
(=) 75e™ () 20
for all s € Ny and 7 € R»,.

Due to its importance (cf. [1, 18]) there is an extensive literature on this conjecture.
Nevertheless it has resisted all attempts at proving it. For an overview of all the approaches
before 1998 leading to partial results, we refer the reader to Moussa’s survey [20].

In 2004, Lieb and Seiringer [18] achieved a breakthrough paving the way to a series of
new attempts at proving the BMV conjecture. They succeeded in restating the conjecture in
the following purely algebraic form:

Conjecture 1.1 (BMV, algebraic form) The polynomial
p:=tr((A+1tB)") € R[t]
has only nonnegative coefficients whenever A and B are n X n positive semidefinite matrices.

The coefficient of X in p is the trace of S,, (A, B), the sum of all words of length m in
A and B in which B appears exactly k times (and therefore A exactly m — k times). It is
easy to see that these coefficients are real for hermitian A, B.

Suppose A, B are positive semidefinite n x n matrices. For k <2 orm —k < 2, each word
appearing in S, (A, B) has nonnegative trace as is easily seen. This proves the conjecture
for m <5. For n <2, A can (as always) be assumed to be diagonal and after a diagonal
change of basis also B has only nonnegative entries. Hence the conjecture is trivial for n < 2.
The first nontrivial case (m, k,n) = (6, 3, 3) was verified by Hillar and Johnson [12] with
the help of a computer algebra system by considering entries of both 3 x 3 matrices, A and
B, as scalar and therefore commuting variables. Hégele [6] shifted the focus from scalars
to symbolic computation with matrices (regardless of their size) and gave a surprisingly
simple argument settling the case (m, k) = (7, 3) and thus also (m, k) = (7, 4) by symmetry.
Combined with the easy observations from above, this proves Conjecture 1.1 for m = 7.

Higele then deduced the case m = 6, which he could not solve directly with his tech-
nique, by appealing to the following seminal result due to Hillar [10]: If Conjecture 1.1
is true for m, then it is also true for all m" < m [10, Corollary 1.8]. A strengthening [10,
Theorem 1.7] of this result (see Sect. 4 for a precise statement) is crucial for our main con-
tribution:
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Sums of Hermitian Squares and the BMV Conjecture 741

Theorem 1.2 The BMV Conjecture 1.1 holds for m < 13.

We exploit semidefinite programming to find certain certificates for nonnegativity of
tr(Sm.x (A, B)) which are dimensionless (i.e., valid for all n). These certificates are alge-
braic identities in the ring of polynomials in two noncommuting variables involving sums of
hermitian squares. The found identities are exact though obtained with the help of numeri-
cal computations. But they exist only for certain pairs (m, k) and we have to rely on Hillar’s
work to deduce Theorem 1.2. For instance, such a sum of hermitian squares certificate does
not exist for (m, k) = (6, 3), see Example 3.5.

With the benefit of hindsight, Higele’s argument can be read as such a certificate for the
case (m, k) = (7, 3). However, the certificates we give for (m, k) = (14,4) and (m, k) =
(14, 6) are much more involved and seem to be impossible to find by hand.

This paper is organized as follows. Section 2 develops the appropriate algebraic frame-
work needed for the desired nonnegativity certificates. In Sect. 3 the existence of such a
certificate is transformed into a linear matrix inequality (LMI) enabling us to search for
these certificates using semidefinite programming (SDP). Section 4 explains the overall ar-
gument for the proof of Theorem 1.2. The proof itself is presented in full detail in Sect. 5.
A synopsis of our results and other recent developments is given in Sect. 6, where we also
relate the BMV conjecture to another just as old open problem of Connes on II,-factors.
Finally, in the appendix we streamline the proof of the mentioned crucial result of Hillar
and give an alternative argument to prove the BMV conjecture for m = 13 avoiding Hillar’s
theorem.

2 From Matrices to Symbols

The gist of our method is to model the matrices as noncommuting variables instead of disag-
gregating them into scalar entries modeled by commuting variables. To this end we introduce
the ring of polynomials in two noncommuting variables.

Remark 2.1 1t is easy to see [15, Lemma 3.15] that the nonnegativity of tr(S, (A, B))
for all positive semidefinite complex A and B of all sizes need only be checked for all
positive semidefinite (in particular symmetric) real A and B of all sizes (by identifying n x n
complex matrices with 2n x 2n real matrices). We therefore work over the real numbers.

We write (X, Y) for the monoid freely generated by X and Y, i.e., (X,Y) consists of
words in two letters (including the empty word denoted by 1). Let R(X, Y) denote the as-
sociative R-algebra freely generated by X and Y. The elements of R(X, Y) are polynomials
in the noncommuting variables X and Y with coefficients in R. An element of the form aw
where 0 #a € R and w € (X, Y) is called a monomial and a its coefficient. Hence words
are monomials whose coefficient is 1. We endow R(X, Y) with the involution p > p* fix-
ing RU {X, Y} pointwise. Recall that an involution has the properties (p + g)* = p* + g*,
(pg)*=¢q*p* and p** = p for all p,q € R(X, Y). In particular, for each word w € (X, Y),
w* is its reverse.

Definition 2.2 Two polynomials f, g € R(X, Y) are called cyclically equivalent ( f L g)if
f — g is a sum of commutators in R(X, Y). Here elements of the form pg — gp are called

commutators (p,q € R(X, Y)).
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742 I. Klep, M. Schweighofer

This definition reflects the fact that tr(AB) = tr(B A) for square matrices A and B of the
same size. The following proposition shows that cyclic equivalence can easily be checked
and will be used tacitly in the sequel. Part (c) is a special case of [15, Theorem 2.1] motivat-
ing the definition of cyclic equivalence.

Proposition 2.3

(a) For v,w € (X,Y), we have v Lw if and only if there are vy, v, € (X,Y) such that
v =0V and w = vyv;.

(b) Two polynomials f = dex,y) ayw and g = Zwe()(,w byw (ay, by, € R) are cyclically
equivalent if and only if for each v € (X, Y),

Z a, = Z)bw.

we(X,Y) we(X,Y
cyc cyc
wAY wA Y

(c) Suppose f e R(X,Y) and f* = f. Then f Lo if and only if tr(f (A, B)) =0 for all
real symmetric matrices A and B of the same size.

Definition 2.4 For each subset S C R(X, Y), we introduce the set
SymS:={geS|g" =g}

of its symmetric elements. Elements of the form g*g (g € R(X, Y)) are called hermitian
squares. We denote by

n = {Zg,-*gi | g e R(X, Y)} C SymR(X,Y)

the convex cone of all sums of hermitian squares and by
O :={feR(X,Y)|Igex?: f Xy}

=324 {Z(gihi —higi) | &,hi e R(X, Y)} CR(X,Y)

the convex cone of all polynomials that are cyclically equivalent to a sum of hermitian
squares.

The following theorem proved in [7] also holds for several variables and motivates the
use of sums of hermitian squares (see [8] for a survey of recent developments). We will only
use the easy implication from (i) to (ii).

Theorem 2.5 (Helton) The following are equivalent for f € SymR(X, Y):
(i) fex*
(1) f(A, B) is positive semidefinite for alln € N and A, B € SymR"*".

To obtain the desired type of certificates we try to merge Proposition 2.3(c) with Theo-
rem 2.5. However, such certificates do not always exist.
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Remark 2.6 Consider the following conditions for f € R(X, Y):

(1) fe®’
(2) tr(f(A,B))>0foralln e Nand A, B € SymR"*".

Then (1) implies (2) but not vice versa. For instance,
YX*Y 4+ XY*X —3XY?X + 1 e SymR(X, Y)

satisfies (2) but not (1) (see [15, Example 4.4] for details). Later on we will see further such
examples.

3 From Symbols to Matrices

To search systematically for the certificates just introduced, we develop a noncommutative
version of the Gram matrix method. The corresponding theory for polynomials in commut-
ing variables is well-known and has been studied and used extensively, see e.g. [3, 21].

Checking whether a polynomial in noncommuting variables is an element of %2 or @2,
respectively, is most efficiently done via the so-called Gram matrix method. Given a sym-
metric f € R(X, Y) of degree <?2d and a vector v containing all words in X, Y of degree
<d, there is a real symmetric matrix G with f = v*Gv. (Here v* arises from v by applying
the involution entrywise to the transposed vector v'.) Every such matrix G is called a Gram
matrix for f. Obviously, the set of all Gram matrices for f is an affine subspace.

Example 3.1 Consider the polynomial
hi=X*4+2XYX +2X*+Y*+2Y +1eSymR(X, Y).
Since h has degree four, we choose
v:=[1,X,Y X XY, YX, Y*].

Then every Gram matrix for / has the form

1 0 1 a 0 0 b
0 2—2a 0 0 0 1 0
1 0 1-26 0 0 0 0
G=|a 0 0 1 0 0 O0]eSymR™.
0 0 0 0 0 0 0
0 1 0 0 0 0 0
| b 0 0 0 0 0 0]

We will revisit this example below.

From Cholesky’s decomposition we deduce that f € SymR(X, Y) is a sum of hermitian
squares if and only if it has a positive semidefinite Gram matrix. Indeed, if G = C*C is a
positive semidefinite Gram matrix for f, then f = 0*C*Cvo = (C0)*(Cv) =), g8 € x?
where g; € R(X, Y) is the i-th entry of the vector Cv. The converse follows the same line
of reasoning.
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744 I. Klep, M. Schweighofer

Example 3.1 (continued) There is no positive semidefinite Gram matrix G for & since the

determinant of the submatrix
G22 G26 _ 2—2a 1
G Ges| | 1 0

is always negative. Hence h ¢ ¥2.

The existence of a sum of hermitian squares decomposition of f € SymR(X, Y) is equiv-
alent to an LMI feasibility problem. As such it can be decided by solving the SDP

minimize tr(G) subjectto v*Gv = f, G positive semidefinite.

Note that v*Gv = f are just linear constraints on the entries of G as one sees by com-

paring coefficients. The objective function G — tr(G) is often a good choice for finding

nice low rank matrices G but can be replaced by any other function linear in the en-

tries of G. If the polynomial is dense (no sparsity), the dimension of the LMI is equal to

29+ — 1) x (29*! — 1). For more on SDP, we refer the reader to the survey [24].
Likewise, checking whether f € ®2 can be done by solving the SDP

minimize tr(G) subjectto v*Gv L f, G positive semidefinite.

By Proposition 2.3(b), 5*G ~ f are again linear constraints on the entries of G.
For the sake of convenience, from now on a real symmetric matrix G will be called a

Gram matrix for f € R(X, Y) (with respect to a vector of words v) if f L 5*G.

Example 3.1 (continued) Every Gram matrix (in the new sense) for 4 has the form

1 1 .

1 0 1 1-— %al —dy — as as 7 5614
0 a as 0 —ag—ar;+1 ag —ag — dg
1 as ay ay as dg 0
1—3a 0 as 1 —aio ajy  —3an — 3anp
—ay—az —ag—a;+1 ag —apg ap 0 —as
a as as aio 0 an as
L % — %614 —dag — dy 0 —%(111 — %alz —ds ds 0 n

Setting a4 = a; = 1 and all other a; to zero, we get the positive semidefinite matrix G =
[1T011000]*[101 100 0] with corresponding representation / z (X2 +Y+1)?ex?
ie,he®

In the proof of our main result we will use the Gram matrix method to show that certain
Snx(X2,Y?) € ®%. We start by dramatically reducing the sizes of corresponding SDPs with
a monomial reduction. For this, we need a technical lemma.

Lemma 3.2 Let p; e R(X,Y).

(a) Iffor A, B € SymR"", tr(}_,(p; pi)(A, B)) =0, then p;(A, By =0 forall i.
(b) IF Y, pipi =0, then p; =0 for all i.
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Proof (a) Denote by e; the canonical basis vectors of R”. Then

0= tr(Z(p:‘pixA, B)) =D {(p;pi)(A, B)ej, ;) =Y (pi(A, B)e;, pi(A, B)e;).

ij ij
Hence p;(A, B)e; =0 for all i, j and thus p;(A, B) =0 for all i.

) If Y, pipi XL 0, then tr(>"; pi(A, B)*p;(A,B)) = 0, and by the above,

pi(A, B) =0 for all symmetric A and B of all sizes n. This implies p; = 0 for all i (see
e.g. [13, Proposition 2.3]). O

Not only do we drastically reduce the number of words needed in the Gram method for
S,k (X2, Y?) but we also impose a block structure on the Gram matrix G with blocks G;.
This is done in the following proposition. We use self-explanatory notation like {X?2, Y2}¢
for the set of all words that are concatenations of £ copies of X2 and Y?2.

Proposition 3.3 Fixm,k € N.

(a) If m and k are even, set
V= {v e (X2, Yz}% |degyv=m —k, degyv:k},
V, ::{veX{Xz,Yz}%_lX|deng:m—k, degyv:k},
V3 ::{veY{X2,Y2}%_1Y|deng:m—k, degyv:k}.
(b) If mis odd and k is even, set
V= [v e X{X?, YZ}W_Z_l |degyv=m —k, degyv:k},
V= [v e (X2, Yz}m_’ZlX |degyv=m —k, degyv:k}.
(¢) If m and k are odd, set
Vii= {v e Y{X?, Yz}% |degyv=m —k, degyv=k],
v2:={ve{xz,yz}%mdegxz;:m—k, degyvzk].
(d) If m is even and k is odd, set
V= {v e X{X2,Y}57'Y |degyv=m —k, degyv:k},
vy ::{veY{Xz,Yz}%’lX|deng:m—k, degyv:k}.

Let v; denote the vector [v]yey,. Then Sm,k(Xz, Y?) € ®? if and only if there exist positive
semidefinite matrices G; € SymRY*Yi such that

Sk (X2 Y)Y 5 Gir. ey

1
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746 I. Klep, M. Schweighofer

IfGi=C/Ciand C; € R7>*Vi (J; some index set), then with [pi,jljes; := Civ; we have

S (X2 YL pripi . @

ij

Proof The second statement is clear since
D Gy =Y 5 CICiv =Y (CH)*Citi =Y plipi;-
i i i ij

We assume without loss of generality that 1 <k <m — 1. Suppose that S, ; (X2, Y?) €
®%ie.,

Sua(X2YHZTN " prp; 3)
J
for finitely many O # p; € R(X,Y). Set d := max; deg, p; and let P; be the sum of all
monomials of degree d with respect to Y appearing in p;.

Fix real symmetric matrices A and B of the same size. For any real A, we have
A2k tr(Sm,k(Az, B?)) = tr(Zj pi(A,AB)*p;(A, AB)). We consider this as an equality of real
polynomials in A.

If we assume d > k, then tr(zj P;(A, B)*P;(A, B)) = 0 since the degree of the right
hand side polynomial cannot exceed the degree of the left hand side polynomial. By (3.2) of
Lemma 3.2, we get P; (A, B) =0 forall j. Since A and B were arbitrary, this implies P; =0
by Lemma 3.2(b), contradicting the choice of d. Therefore all monomials appearing in p;
have degree < k in Y. By similar arguments, one shows that all p; are actually homogeneous
of degree m — k in X and homogeneous of degree k in Y, i.e., p; € spanp W where W is
the set of all words of length m with the letter X appearing m — k times and the letter Y
appearing k times.

Claim Suppose we are in one of the cases (a)—(d) and v; € V; for each i. Then v}v; X u for
some u € {X2, Y2} if and only if i = j.

Proof of Claim The “if” part is immediate. To show the “only if”” part, we assume that i £ j
and show that v}v; contains ¥ X‘Y or XY ‘X as a subword for some odd ¢. Then the claim
follows by Proposition 2.3(a).

The existence of such a subword must be checked case by case. As an example, con-
sider (a). By symmetry arguments, it suffices to look at vjv, and vjvs. In the former case,
the letter at position m + 1 in v v, is an X which is followed to the left and right hand side
by finitely many X2. This block of X’s has odd length and is embraced at both ends by a
Y since we have assumed k > 1. In the latter case, there is an X at the m-th and a Y at the
(m + 1)-st position in vivs. This Y is followed to the right hand side by finitely many Y>
giving a block of Y’s of odd length surrounded by X’s.

The other cases (b)—(d) are essentially the same, proving the claim.

Write each p; as p; =Y, pij +q; where p; ; € spany V; and ¢, € spang U with U :=
WA\ U, Vi. By the claim, pip; =, p};pij +r; where 3, p; ;p: ; is a linear combination
of words that are cyclically equivalent to a word in {X?, Y2} and r ; is in the linear span
of words not cyclically equivalent to a word in {X?, Y2}, By part (b) of Proposition 2.3, it
follows that (3) can be split into

S (X2, YH X pr,jphj and 0% er.

i,j J
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Now let J be the index set consisting of all j and define matrices C; € R’*Vi by
[pi.jljes = C;v;. Then the matrices G; := C;C; are positive semidefinite and satisfy (1). [

We illustrate the proposition by two examples.

Example 3.4 We have Sg 4(X?2, Y?) € ®2. For instance, with
5, = [Y2X2Y2X2, YAX4, X2Y* X2, Y2Xx'Y?, X*y?, XPy2xPy?y,
U, = [XY*X3, XY*’X?Y*Xx, X°v* XY,

Uy = [Y2X*Y, YX?Y2 XY, YX*Y3Y

and
(4 4 0 3 1 17
4 4 0 3 1 1
1 0 —1
003 03 3
Gi=13 3 03 0 0| Gz_G3__01(0)(1)’
1 1 3 0 4 4
1 1 3 0 4 4]

Sg.4 (X%, Y?) XL Z% v¥G;v;. The matrices G; which we found using SDP are positive semi-

i=1"i
definite as can be seen from their characteristic polynomials

PG, = —1081> +129¢* — 22> +1° e R[¢],
PG, = Pey = 21> — 12 €R[1].

Alternatively, we can use the Cholesky decompositions G; = C;C; for

(44 o 3 1 1
Ci=3]0 0 23 0 2V3 2V3 |, G=GC=[1 0 -1].
00 0 V3 —V3 -3

A first nontrivial nonnegativity certificate of this type was found in an ad hoc fashion by
Higele [6], namely

cyc

S73(X2, YY) X 7(Y2X4Y)* (Y2 X1Y)
+7(X*Y*X*Y + X'V (X*Y?X?Y + X*Y?) e 22 )
This proves Conjecture 1.1 for m = 7 (since the cases k <2 and m — k < 2 are trivial
and S7’4(X2, Y?) = S7,3(Y2, X?) € ®?). Note that the representation (4) uses only words
from V; of Proposition 3.3(c). Hégele also showed that there is no such representation
for S3(X?, Y?) using only words from V; of Proposition 3.3(d). However, he speculated

that admitting more words might lead to such a representation meaning in our setup that
S6.3(X?, Y?) € ®2. Our next example proves that this is not the case.

Example 3.5 We show that Ss3(X2, Y?) ¢ ©2. Suppose, by way of contradiction, that
S6.3(X?, Y?) € ®2. Then by Proposition 3.3(d), with the basis

V={Y3x3 vXx*y’x, Xxy*x%, xX’v?)
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748 I. Klep, M. Schweighofer

we can find a positive semidefinite Gram matrix for Sg3(X 2. Y?) that is block diagonal of
the form

G6’3 = S R4X4.

0 0 by b
0 0 b by

With 0 = [v]yey, it follows from Se 3(X2, Y2) X §*Ge 30 that

ayp apn 0 0
ap axp 0 0
0 0 2—6122 6—6112
0 0 6—6112 6—a11

Gej3 =

For a positive semidefinite matrix of this form, 0 <a;; <6, 0 <ay <2,

2
ay, < ajax, 5)

(6 —ap)* < (6—a1)2—ax). (6)
By adding (5) and (6), we obtain
36 — 12ay, +2ai, < 12 — 2a;; — 6axn + 2a; axn.
As —2ay; — 6ax + 2a11a» = ap(ay; — 6) + a1 (axn — 2) <0, this implies
0> a}, — 6a;; + 12 = (a;; — 3)* +3,

a contradiction. Hence Sg3(X?, Y?) ¢ ©2.

4 Strategy of the Proof

An important ingredient in the proof of Theorem 1.2 will be the following descent result of
Hillar [10, Theorem 1.7]:

Theorem 4.1 (Hillar) The failure of Conjecture 1.1 for a certain (m, k) implies failure for
all (m' k'Y withm’ — k' >m —k and k' > k.

In view of this theorem it suffices to prove Conjecture 1.1 for (m,k) = (14,4)
and (m,k) = (14,6). To do this we apply our Gram matrix method to prove that
Sl4$4(X2, Yz) (S @2 and S]4,6(X2, Y2) (S @2.

Since the search for positive semidefinite Gram matrices is done by SDP, the entries of
the found matrices are only floating point numbers and do not provide a sound proof for the
existence of a certificate of nonnegativity. However, in our case, there happen to exist such
Gram matrices with rational entries and we have employed several strategies and heuristics
to find them.

First, we have detected symmetries and patterns in the numerical solutions and imposed
them as additional constraints in subsequent SDPs. Second, we have worked with different
objective functions in order to find solutions with some “nice” rational entries that could
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Sums of Hermitian Squares and the BMV Conjecture 749

be fixed. Finally, we have employed rounding techniques involving heuristics to guess the
prime factors appearing in the denominators of the presumably rational entries. All too of-
ten, we have however lost numerical stability and had to backtrack in this manually guided
refinement process.

For a systematic treatment of finding exact rational sum of squares certificates for poly-
nomials in commuting variables we refer the reader to [22], see also [11] and the references
therein.

5 Proof of Theorem 1.2

As mentioned above, it suffices to show that Sy4 4(X2, Y?), Sl4’6(X2, Y?) € @2 (cf. the table
on p. 16 below). Let

{)14’4:[Y2X10Y2, X4Y2X2Y2X4, }(6)}4){47 XZnyGyzxz, X4Y2X4Y2X2,
X3y X2 + XOV2X%Y2 X%, Xty xoy? + X2y xty?,

X10Y4 +X8Y2X2Y2+X6Y2X4Y2]t

and

7 0 0 0 0 0 7 77

o7 7 0 7 7 0 0

07 14 0 7 7 0 0

Grus— oo o 7 7 7 7 1

' o7 7 7 14 14 7 1

o7 7 7 14 14 7 17

70 0 7 7 7 14 14
17 0 0 7 7 7 14 14]

Then S14,4(X2, Y?) E4 V{4 4G144V144. The matrix G44 is positive semidefinite with
Cholesky decomposition G144 = L}, 4L14,4, where

1000001 1
01 101100
L‘4'4_ﬁ00100000
000 1 1 111

‘We now consider S14$6(X2, Y?). Let A146 be the symmetric 15 x 15 matrix from p. 751
and

e =[Y>XOY2X%Y, YX?Y2X2Y2 XYY, Y2 X*Y2X*Y, YX2Y4X®Y,
Y3X2y2xoy, Yo x8y, Y X*YAX4Y, YXPY2XAY2XPY, Y3X3Y3,
YX8Y3, Y XOV2X2Y3, YXOv* X2y, Y X*Y2X*Y3,

YX*Y2Xx2y2X%y, Y X2V Xxoy3Y.
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750 I. Klep, M. Schweighofer

From the matrices on pp. 752 and 753 we form a symmetric 35 x 35 matrix Bj4 6 as follows:
The top left 18 x 19 block is given by the matrix on p. 752, the bottom left 17 x 19 block is
given on p. 753 and the other entries are obtained from

[Bisli,j = [Biaglze—jze—i fori, j>19.
Let

Wi = [Y2X2Y2XOV?, YAXBY2, Y2XOV4X?, Y2 XY2 XY X2, X2V XY X2,
Y2X2Y2X4Y2X2, vAXOYEX2, XPYIXPYAX: viXAYA XY,
X2YAX2Y2x4 YIXPYPXPYA X, vAxAYi X, XPyoxe, v2xyixe,
YAX2y2x°, vox®, x4vox*, xX2y2x2y2x*y*x?, v2x*y*x*y?,
x8y®, xOy2ix?y*, xOv4x?y?, x°vox?, x*vix*rt,
XAY2XPY2X2Y?, XAYPXPYAXE, XAYAXAY?, XA XPYrX?,
X2Y2Xoy*, X2Y2XAY?X2y?, X2Y2 XAy x?, XPYPXPyixty?,

X2y xoy?, v2x®qy*, Y2 xoy?x’y?.

Then

Siue(X2,YH X Uiy 6A14,6014,6 T Wiy 6Bla6Wi4s. @)

Both matrices A4 and Bjse are positive semidefinite as is easily checked by look-
ing at the corresponding characteristic polynomials using symbolic computation. Hence
Sl4,6(X2, Y?) e ®2. By Theorem 4.1, this proves the BMV conjecture for m < 13.

Remark 5.1 The word vectors u14,6 and w4, as well as the matrices on pp. 751, 752 and
753 can be found in the Mathematica notebook that is available with the electronic version
of the source of this article (http://arxiv.org/abs/0710.1074). In the same file we also provide
code that verifies the nonnegativity certificate (7) when executed.

6 Concluding Remarks
6.1 Current State of the BMV Conjecture

The following table shows the examples we have computed on an ordinary PC run-
ning Mathematica with the NCAlgebra package [9], Yalmip [19] and the SDP solver Se-
DuMi [23]. Most of the computations took a few seconds, some of them a few minutes.
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13

15
16
17
18
19

Is Sm k(X2 Y?) € ©27

symbol meaning
Sk is in ©2 for trivial reasons
] Sk is in ©2 (with proof)
+ Sk is in ©2 (numerical evidence)

i i 9 §
Sk is not in ©= (with proof)
Sk is not in ©2% (numerical evidence)

Legend

While finishing our paper, Landweber and Speer sent us a closely related preprint [16]
where they prove for example that S, 4(X?, Y?) € ©2 for odd m and that S;; 3(X?, Y?) € ®2.
Their certificates only use words from V) of Proposition 3.3. They also give results on the
negative side, which imply by Proposition 6.1 below that S,,, ; (X2, Y?) ¢ ©? in the following

cases:

(1) misoddand 5 <k <m —5;
(2) m >131is odd and k = 3;
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(3) miseven,kisoddand3 <k <m — 3;
@) (m, k)= (9,3).
The compatibility between our setup and the setup of Landweber and Speer [16] is provided

by the following proposition communicated to us by Eugene Speer. We thank him for letting
us include this result.

Proposition 6.1 Retain the notation from Proposition 3.3 and assume that m or k is odd.
Then S, (X2, Y?) € ©2 if and only if S, 1 (X2, Y?) L v{G v, for some positive semidefi-
nite G, (or equivalently, if and only if S, x(X?, Y?) L v; G20, for some positive semidefi-
nite G,).

Proof One direction is trivial and for the converse suppose that S, ; (X2, Y2) € ®2. Then by
cyc

Proposition 3.3, Sm,k(Xz, VRS Z?:I v} G;v; for some positive semidefinite G, G,. Note
that w € V; if and only if w* € V,. Hence,

DG = Y v(GDuu= Y w(Gu X Y G uew = 3G,

v,ueV w,zeVp w,zeVp

where G/ is a positive semidefinite matrix obtained from G, by a relabelling of rows and
columns. Thus
2
Sua(X2 YD) XD 5 Giv; X 03(Gh + Go)a
i=1

and similarly S, (X2, Y?) < 55(G| 4 G})0;. O

Independently of the work of Landweber and Speer, the doctoral student Burgdorf
[2], initially guided by further numerical experiments, found a combinatorial proof of
Sm,4(X2, Y?) € ®? for all m.

To summarize, the table on p. 16 can be updated as follows:

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
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Moreover, the table continues like one would expect from looking at the lines m = 19, 20,
21, 22. Hillar’s descent Theorem 4.1 together with positive results for k = 4 (by Landwe-
ber and Speer and, independently, by Burgdorf) establishes Conjecture 1.1 for k <4 and
m — k <4. Also, there is still the possibility of proving the BMV conjecture in the same
manner by replacing a suitable sequence of ?, which only occur for even m and &, by &.

Very recently, using analytical methods, Fleischhack [4] and, independently, Friedland
[5] have shown the following: For fixed positive semidefinite A, B and k € N there is an
m' > k, such that tr S, (A, B) > 0 for all m > m’. If m’ could be chosen independently of
A, B, then Conjecture 1.1 would follow by Hillar’s descent theorem.

6.2 Relation to Connes’ Embedding Conjecture

In [15] we studied the following conditions for real symmetric polynomials f in noncom-
muting variables X := (X, ..., X,):

@ u(f(A,...,A))>0foralln e Nand all A; € SymR"" with ||A;|| < 1;
a) t(f(a,...,a)) 2_0 for all II;-factors F and all @; € Sym F with ||a;|| < 1;
(iii) Ve e R.p3g e R(X):

fHeXgeM:= {Zg;*gi + Y k(L= XDhij | g hi ezm)}.
i i,j

We proved that (ii) and (iii) are equivalent and imply (i). Moreover, we showed that
the converse implication (i) = (ii) is equivalent to an old conjecture of Connes about type
11, -factors.

In Example 3.5 we have seen that S 3(X2, Y2) ¢ @2, hence the tracial version of Helton’s
sum of hermitian squares theorem [7] fails (cf. also Remark 2.6). By homogeneity, even
Se3(X2,Y?) 4+ & ¢ © for all ¢ € R. Similarly, there is no g € M with Sg3(X2,Y%) X g
although Ss3(X?2, Y?) satisfies (i). However, it is unknown whether Sg3(X2, ¥?) satisfies
(ii) (or equivalently, (iii)). If it does not, then Connes’ embedding conjecture fails.

Acknowledgements We would like to thank Christopher Hillar for introducing the second author to the
BMYV conjecture at an IMA workshop in Minneapolis. The main part of the work was done at the Universitit
Konstanz, the former host institution of the second author, during a stay of the first author financed by the
DFG. Part of the work was also done during the Real Algebraic Geometry workshop in Oberwolfach in
March 2007. A preliminary report of this work appeared in the Oberwolfach reports [14]. We would like to
thank Peter Landweber and Eugene Speer for the careful reading of a previous version of the manuscript.
They provided us with a detailed list of comments and corrections that improved the exposition as well as
some of the results. Also, Pierre Moussa and Sabine Burgdorf contributed some valuable remarks. Finally,
we would like to thank two anonymous referees for their suggestions which greatly contributed to the overall
presentation.

Appendix A: Euler-Lagrange Equations

Hillar’s proof of the descent Theorem 4.1 relies on [10, Corollary 3.6]. In this section we
prove a similar statement, Lemma A.1, which can alternatively be used to prove the descent
theorem by a simple inspection of Hillar’s proof.

Our proof of Lemma A.1 uses only Lagrange multipliers and is shorter and simpler than
Hillar’s variational proof of [10, Corollary 3.6]. However, the two results are not entirely
reconcilable.
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For a variational approach to the original form of the BMV conjecture, we refer the reader
to [17], see also [20].

Lemma A.1 Given n € N, suppose that (A, B) minimizes tr(Sm,k(Az, B?)) among all sym-
metric A, B € R"*" of Hilbert-Schmidt norm 1. Suppose further that A and B are positive
semidefinite. Then

m—k

AS,_1 (A%, B?) = tr(S,x (A%, B))A and ®)

k
BSyu_14-1(A% B*) = —tr(S,, 1 (A%, B*))B. )
m

Proof We actually prove more. We fix an arbitrary B € SymR"*" and show that (8) holds
when a positive semidefinite matrix A minimizes tr(S,, 1 (A2, B%)) among all A € SymR"*"
with ||Allgs = 1. Then a corresponding statement will hold for (9) by symmetry. Recall
that the Hilbert-Schmidt norm on SymR"*" is induced by the scalar product given by
(A, B)ys :=tr(AB) = Zi, j A; jB; j. We use the method of Lagrange multipliers and there-
fore compute the first derivatives of the functions f, g : SymR"*" — R given by

fiA (S, (A%, B%) and g: A tr(A?) = ||A%s.

The derivatives Df(A)[H] and Dg(A)[H] at A € SymR"*" along the direction H €
SymR"*" are the coefficients of the linear terms of f(A + AH) and g(A + AH) consid-
ered as polynomials in A, respectively. Since

g(A+AH) =tr((A + LH)(A + AH)) = tr(A2) + A(tr(AH) + tr(HA)) + A2 tr(H?),

we get Dg(A)[H]=tu(AH)+tr(HA) =tr(QAH) = (2A, H), i.e., the gradient of g in A is
Vg(A) =2A.

The calculation of Df (A)[H] is more complicated, but follows the same scheme, namely
that one occurrence of A? at a time can be replaced by AH or H A. The idea is the same as
in the proof of [10, Lemma 2.1]. We have

0= tr(Z(A2 +1B*)" "N (AH + HA) — (AH + HA))(A® + rBZ)"'-i>

i=1

=tr(m(AH + HA)(A> +tB*)"")

- tr<Z(A2 +tBY) "N (AH + HA)(A® + th)m—’)

i=1
and the coefficient of ¢* in the last expression is
tr(m(AH + HA)S,,14(A%, B)) — Df (A)[H].
This implies
Df(A)H] = (m(ASu_1x(A%, B*) + Su_1k(A*, B)A), H)

and therefore V f(A) = m(AS,,_1 4 (A%, B?) + S,._1.1 (A%, BH)A).
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If A is now a minimizer as stated, then we obtain a Lagrange multiplier u € R such that
Vf(A)=puVg(A) (since Vg(A) =2A #0), i.e.,

ASyu_1 k(A% B®) + S,_1k(A*, BY)A = pA. (10)

We now subtract the two equations that can be obtained from (10) by multiplication with A
from the left and right, respectively, and see that A> commutes with S,,_; (A2, B?). If A
is in addition positive semidefinite, then also A commutes with S,,_ Lk(Az, B?). Therefore
(10) becomes AS,,_; «(A%, B*) = & A. Moreover,

n m—k

5= tr(%#) = tr(A%S,_14(A%, BY) = tr(Sp 4 (A%, B))

by [10, Lemma 2.1]. O

Appendix B: Self-Contained Proof of Conjecture 1.1 for m = 13

Instead of Hillar’s descent Theorem 4.1 one can use special features of the found nonnega-
tivity certificates for Si44(X2, Y?) and Sy4.6(X2, ¥?) to deduce Conjecture 1.1 for m equal
to 13. We include this since the ideas might be helpful in future algebraic approaches to the
BMV conjecture.

Retain the notation from Sect. 5. From the Cholesky decomposition of G144 we deduce
that

4
Sia4(X?,Y?) £y Zg;kgi

i=1
for
g1 = ﬁ(y2X10Y2 + X4y4X6Yz +X2y2x8yz —|—X10Y4 +X8y2x2yz —|—X6Y2X4Y2),
2 =VIXY2XPY2 XY + XV X 4+ XY XAYP XY + X3V X 4 XOY2XPY2XD),
g3 =VTX°Y*X*,
g :ﬁ(X2Y2X6Y2X2 +X4Y2X4Y2X2 +X8Y4X2 +X6Y2X2Y2X2
+ XY X024 X2y X8y 4+ X0yt 4 x3y2x2y? 4+ XOy2XiY?).
We now turn to Sy46(X2, ¥2). Let [1]35x35 be the 35 x 35 matrix with all entries equal

to 1. Then Bia¢ — A[1]35x35 is positive semidefinite whenever

5888894501020664034438572773247271387

< ~9.281 x 1077,
6345100314096416989598091089889990510969779

As Wl ¢[1135x35Wi1a.6 = S7.3(X%, Y*)2, this implies that for some h; € R(X),

cyc

S1a6 (X7, Y X077 S5 5(X%, Y2+ ) k. (1)

1
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We are now ready to prove Conjecture 1.1 for m = 13. It is easy to see that
S (X%, Y% € © for k € {0,1,2, 11, 12, 13}. Let us consider S;33(A%, B?) for positive
semidefinite A, B € R"*". Suppose there are such A, B with

tr(S13.3(A%, B?)) < 0. (12)

By Lemma A.1, we may without loss of generality assume that A and B satisfy (8) and (9)
(with m = 13 and k = 3). Then AS;,3(A2, B?) and BSj,,(A2, B?) are negative semidefi-
nite, A commutes with Sj53(A?, B?) and B commutes with S} (A%, B?). Hence

Si33(A%, B?) = A?S125(A%, B®) + B2S122(A%, BY)

is negative semidefinite and so is BS;33(A%, B)B. By the above, Si44(X?2, Y?) € ®?, s0

2 p2 14 > 2 p2 14 2 p2
0<tu(S144(A", B ))thr(B S13,3(A%, BY)) = mtr(BSms(A ,B7)B) <0.

cyc

(For the first equality see e.g. [10, Lemma 2.1].) As Si44(X2, Y?) < Z?=1 g'gi with
g3 = V1XV*X* and tr(S144(A%, B?)) = 0, A°B*A* = 0 by Lemma 3.2. In particular,
tr((B>A3)*(B?A%)) = 0, hence B>A> = 0. Repeating this we obtain BA%? = A/2B = 0.
But then S)33 (A%, B%) =0, contradicting (12). This proves the BMV conjecture for (m, k) €
{(13,3), (13, 10)}. Similarly, the cases (m, k) = (13, 4) and (m, k) = (13, 9) can be handled.

Let us now consider S13,5(A2, B?) for positive semidefinite A, B € R"*". Suppose there
are such A, B with

tr(S13.5(A2, B?)) <0. (13)

As before, we can deduce that tr(S14,6(A2, B?) = 0. From (11) it follows that
S73(A2, B2) =0. By (4), this implies B>A*B = 0, thus B3?A2 = A2B%2 = 0. There-
fore S13,5(A2,B2) = 0, contradicting (13). This settles Conjecture 1.1 for (m,k) €
{(13,5), (13, 8)}. To conclude the proof we note that the two remaining cases (m, k) =
(13, 6) and (m, k) = (13, 7) can be handled similarly.
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